Part Number Hot Search : 
C74LV ULCE18 IRF82 ERN1321 ADT6402 X3480BC LL103B A1S109
Product Description
Full Text Search
 

To Download TS488 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  september 2006 rev 4 1/32 32 TS488-ts489 pop-free 120mw stereo headphone amplifier features pop and click noise protection circuitry operating range from v cc = 2.2v to 5.5v standby mode active low (TS488) or high (ts489) output power: ? 120mw @5v, into 16 with 0.1% thd+n max (1khz) ? 55mw @3.3v, into 16 with 0.1% thd+n max (1khz) low current consumption: 2.7ma max @5v ultra low standby current consumption: 10na typical high signal-to-noise ratio high crosstalk immunity: 102db (f = 1khz) psrr: 70db typ. (f = 1khz), inputs grounded @5v unity-gain stable short-circuit protection circuitry available in lead-fre e miniso-8 & dfn8 2mm x 2mm description the TS488/9 is an enhancement of ts486/7 that eliminates pop and click noise and reduces the number of external passive components. the TS488/9 is a dual audio power amplifier capable of driving, in single-ended mode, either a 16 or a 32 stereo headset. capable of descending to low voltages, it delivers up to 31mw per channel (into 16 loads) of continuous average power with 0.1% thd+n in the audio bandwidth from a 2.5v power supply. an externally-controlled standby mode reduces the supply current to 10na (typ.). the unity gain stable TS488/9 is configured by external gain- setting resistors. applications headphone amplifier mobile phone, pda, computer motherboard high-end tv, portable audio player TS488ist - miniso-8 out (1) 4 3 2 1 bypass gnd vcc out (2) vin (2) shutdown vin (1) 5 6 7 8 out (1) 4 3 2 1 bypass gnd vcc out (2) vin (2) shutdown vin (1) 5 6 7 8 out (1) 4 3 2 1 bypass gnd vcc out (2) vin (2) shutdown vin (1) 5 6 7 8 out (1) 4 3 2 1 bypass gnd vcc out (2) vin (2) shutdown vin (1) 5 6 7 8 out (1) 4 3 2 1 bypass gnd vcc out (2) vin (2) shutdown vin (1) 5 6 7 8 TS488iqt - dfn8 ts489iqt - dfn8 ts489ist - miniso-8 8 bypass gnd shutdown vcc out (2) out (1) 7 6 5 1 2 3 4 v in (2) v in (1) 8 bypass gnd shutdown vcc out (2) out (1) 7 6 5 1 2 3 4 v in (2) v in (1) 8 8 bypass gnd shutdown vcc out (2) out (1) 7 7 6 6 5 5 1 1 2 2 3 3 4 4 v in (2) v in (1) 8 bypass gnd shutdown vcc out (2) out (1) 7 6 5 1 2 3 4 v in (2) v in (1) 8 8 bypass gnd shutdown vcc out (2) out (1) 7 7 6 6 5 5 1 1 2 2 3 3 4 4 v in (2) v in (1) www.st.com
contents TS488-ts489 2/32 contents 1 typical application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 absolute maximum ratings and operating conditions . . . . . . . . . . . . . 4 3 electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.1 power dissipation and efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.2 total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.3 lower cut-off frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.4 higher cut-off frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.5 gain setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.6 decoupling of the circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.7 standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.8 wake-up time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.9 pop performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 connecting the headphones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.1 miniso-8 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.2 dfn8 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6 ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 7 revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
TS488-ts489 typical application schematic 3/32 1 typical application schematic figure 1. typical application for the TS488-ts489 table 1. application component information component functio nal description r in1,2 inverting input resistor that sets the closed loop gain in conjunction with r feed . this resistor also forms a high pass filter with c in (f c = 1 / (2 x pi x r in x c in )). c in1,2 input coupling capacitor that blocks the dc voltage at the amplifier?s input terminal. r feed1,2 feedback resistor that sets the closed loop gain in conjunction with r in . a v = closed loop gain= -r feed /r in . c s supply output capacit or that provides power supply filtering. c b bypass capacitor that provides half supply filtering. c out1,2 output coupling capacitor that blocks the dc voltage at the load input terminal. this capacitor also forms a high pass with r l (f c = 1 / (2 x pi x r l x c out )). ts489=stdby TS488=stdby
absolute maximum ratings and operating conditions TS488-ts489 4/32 2 absolute maximum ratings and operating conditions table 2. absolute maximum ratings symbol parameter value unit v cc supply voltage (1) 1. all voltage values are measur ed with respect to the ground pin. 6v v i input voltage -0.3v to v cc +0.3v v t stg storage temperature -65 to +150 c t j maximum junction temperature 150 c r thja thermal resistance junction to ambient miniso-8 dfn8 215 70 c/w p diss power dissipation (2) : miniso-8 dfn8 2. p diss is calculated with t amb = 25c, t j = 150c. 0.58 1.79 w esd human body model (pin to pin) 2 kv esd machine model 220pf - 240pf (pin to pin) 200 v latch-up latch-up immunity (all pins) 200 ma lead temperature (soldering, 10sec) 250 c output short-circuit to v cc or gnd continuous (3) 3. attention must be paid to continuous power dissipation (v dd x 250ma). short-circuits can cause excessive heating and destructive dissipation. ex posing the ic to a short-circuit for an extended period of time will dramatically reduce the product?s life expectancy. table 3. operating conditions symbol parameter value unit v cc supply voltage 2.2 to 5.5 v r l load resistor 16 t oper operating free air temperature range -40 to + 85 c c l load capacitor: r l = 16 to 100 r l > 100 400 100 pf v stby standby voltage input: TS488 active, ts489 in standby TS488 in standby, ts489 active 1.5 v v cc gnd v stby 0.4 (1) 1. the minimum current consumption (i stby ) is guaranteed at gnd (TS488) or v cc (ts489) for the whole temperature range. v r thja thermal resistance junction to ambient miniso-8 dfn8 (2) 2. when mounted on a 4-layer pcb. 190 40 c/w
TS488-ts489 electrical characteristics 5/32 3 electrical characteristics table 4. electrical characteristics at v cc =+5v with gnd = 0v, t amb = 25c (unless otherwise specified) symbol parameter conditions min. typ. max. unit i cc supply current no input signal, no load 2 2.7 ma i stby standby current no input signal, v stby = gnd for TS488, r l =32 10 1000 na no input signal, v stby =v cc for ts489, r l =32 10 1000 p out output power thd+n = 0.1% max, f = 1khz, r l =32 75 mw thd+n = 1% max, f = 1khz, r l =32 70 80 thd+n = 0.1% max, f = 1khz, r l =16 120 thd+n = 1% max, f = 1khz, r l =16 100 130 thd+n total harmonic distortion + noise a v =-1, r l =32 , p out = 60mw, 20hz f 20khz 0.3 % a v =-1, r l =16 , p out = 90mw, 20hz f 20khz 0.3 psrr power supply rejection ratio, inputs grounded (1) a v =-1, r l 16 , c b =1f, f = 1khz , v ripple = 200mvpp 64 70 db a v =-1, r l 16 , c b =1f, f = 217hz , v ripple = 200mvpp 62 68 v o output swing v ol : r l =32 0.23 0.31 v v oh : r l =32 4.53 4.72 v ol : r l =16 0.44 0.57 v oh : r l =16 4.18 4.48 snr signal-to-noise ratio a weighted, a v =-1, r l =32 , thd+n < 0.4%, 20hz f 20khz 105 db crosstalk channel separation r l =32 , a v =-1 f=1khz f = 20hz to 20khz -102 -84 db c i input capacitance 1 pf gbp gain bandwidth product r l =32 1.1 mhz sr slew rate, unity gain inverting r l =16 0.65 v/ s v io input offset voltage v icm =v cc /2 1 20 mv t wu wake-up time 100 ms 1. guaranteed by design and evaluation.
electrical characteristics TS488-ts489 6/32 table 5. electrical characteristics at v cc =+3.3v with gnd = 0v, t amb = 25c (unless otherwise specified) (1) symbol parameter conditions min. typ. max. unit i cc supply current no input signal, no load 1.8 2.5 ma i stby standby current no input signal, v stby = gnd for TS488, r l =32 10 1000 na no input signal, v stby =v cc for ts489, r l =32 10 1000 p out output power thd+n = 0.1% max, f = 1khz, r l =32 34 mw thd+n = 1% max, f = 1khz, r l =32 30 35 thd+n = 0.1% max, f = 1khz, r l =16 55 thd+n = 1% max, f = 1khz, r l =16 47 57 thd+n total harmonic distortion + noise a v =-1, r l =32 , p out = 16mw, 20hz f 20khz 0.3 % a v =-1, r l =16 , p out = 35mw, 20hz f 20khz 0.3 psrr power supply rejection ratio, inputs grounded (2) a v =-1, r l 16 , c b =1f, f = 1khz , v ripple = 200mvpp 63 69 db a v =-1, r l 16 , c b =1f, f = 217hz , v ripple = 200mvpp 61 67 v o output swing v ol : r l =32 0.15 0.2 v v oh : r l =32 3.03 3.12 v ol : r l =16 0.28 0.36 v oh : r l =16 2.82 2.97 snr signal-to-noise ratio a weighted, a v =-1, r l =32 , thd+n < 0.4%, 20hz f 20khz 102 db crosstalk channel separation r l =32 , a v =-1 f=1khz f = 20hz to 20khz -102 -84 db c i input capacitance 1 pf gbp gain bandwidth product r l =32 1.1 mhz sr slew rate, unity gain inverting r l =16 0.6 v/ s v io input offset voltage v icm =v cc /2 1 20 mv t wu wake-up time 100 ms 1. all electrical values ar e guaranteed with correlation measurements at 2.5v and 5v. 2. guaranteed by design and evaluation.
TS488-ts489 electrical characteristics 7/32 table 6. electrical characteristics at v cc =+2.5v with gnd = 0v, t amb = 25c (unless otherwise specified) symbol parameter conditions min. typ. max. unit i cc supply current no input signal, no load 1.8 2.5 ma i stby standby current no input signal, v stby = gnd for TS488, r l =32 10 1000 na no input signal, v stby =v cc for ts489, r l =32 10 1000 p out output power thd+n = 0.1% max, f = 1khz, r l =32 19 mw thd+n = 1% max, f = 1khz, r l =32 18 20 thd+n = 0.1% max, f = 1khz, r l =16 31 thd+n = 1% max, f = 1khz, r l =16 27 32 thd+n total harmonic distortion + noise a v =-1, r l =32 , p out = 10mw, 20hz f 20khz 0.3 % a v =-1, r l =16 , p out = 16mw, 20hz f 20khz 0.3 psrr power supply rejection ratio, inputs grounded (1) a v =-1, r l 16 , c b =1f, f = 1khz , v ripple = 200mvpp 68 db a v =-1, r l 16 , c b =1f, f = 217hz , v ripple = 200mvpp 66 v o output swing v ol : r l =32 0.12 0.16 v v oh : r l =32 2.3 2.36 v ol : r l =16 0.22 0.28 v oh : r l =16 2.15 2.25 snr signal-to-noise ratio a weighted, a v =-1, r l =32 , thd+n < 0.4%, 20hz f 20khz 100 db crosstalk channel separation r l =32 , a v =-1 f=1khz f = 20hz to 20khz -102 -84 db c i input capacitance 1 pf gbp gain bandwidth product r l =32 1.1 mhz sr slew rate, unity gain inverting r l =16 0.6 v/ s v io input offset voltage v icm =v cc /2 1 20 mv t wu wake-up time 100 ms 1. guaranteed by design and evaluation.
electrical characteristics TS488-ts489 8/32 table 7. index of graphics description figure open-loop frequency response figure 2 to figure 11 power derating curves figure 12 to figure 13 signal to noise ratio vs. power supply voltage figure 14 to figure 19 power dissipation vs. output power per channel figure 20 to figure 22 power supply rejection ratio vs. frequency figure 23 to figure 25 total harmonic distortion plus noise vs. output power figure 26 to figure 43 total harmonic distortion plus noise vs. frequency figure 44 to figure 52 output power vs. load resistance figure 53 to figure 55 output power vs. power supply voltage figure 56 , figure 57 output voltage swing vs. power supply voltage figure 58 current consumption vs. power supply voltage figure 59 current consumption vs. standby voltage figure 60 to figure 65 crosstalk vs. frequency figure 66 to figure 77
TS488-ts489 electrical characteristics 9/32 figure 2. open-loop frequency response figure 3. open-loop frequency response 10 0 10 2 10 4 10 6 10 8 -75 -50 -25 0 25 50 75 100 125 -135 -90 -45 0 45 90 135 180 225 gain phase vcc=2.5v rl=16 t amb =25c gain (db) frequency (hz) phase () 10 0 10 2 10 4 10 6 10 8 -75 -50 -25 0 25 50 75 100 125 -135 -90 -45 0 45 90 135 180 225 gain phase vcc=5v rl=16 t amb =25c gain (db) frequency (hz) phase () figure 4. open-loop frequency response figure 5. open-loop frequency response 10 0 10 2 10 4 10 6 10 8 -75 -50 -25 0 25 50 75 100 125 -135 -90 -45 0 45 90 135 180 225 gain phase vcc=2.5v rl=16 cl=400pf t amb =25c gain (db) frequency (hz) phase () 10 0 10 2 10 4 10 6 10 8 -75 -50 -25 0 25 50 75 100 125 -135 -90 -45 0 45 90 135 180 225 gain phase vcc=5v rl=16 cl=400pf t amb =25c gain (db) frequency (hz) phase () figure 6. open-loop frequency response figure 7. open-loop frequency response 10 0 10 2 10 4 10 6 10 8 -75 -50 -25 0 25 50 75 100 125 -135 -90 -45 0 45 90 135 180 225 gain phase vcc=2.5v rl=32 t amb =25c gain (db) frequency (hz) phase () 10 0 10 2 10 4 10 6 10 8 -75 -50 -25 0 25 50 75 100 125 -135 -90 -45 0 45 90 135 180 225 gain phase vcc=5v rl=32 t amb =25c gain (db) frequency (hz) phase ()
electrical characteristics TS488-ts489 10/32 figure 8. open-loop frequency response figure 9. open-loop frequency response 10 0 10 2 10 4 10 6 10 8 -75 -50 -25 0 25 50 75 100 125 -135 -90 -45 0 45 90 135 180 225 gain phase vcc=2.5v rl=32 cl=400pf t amb =25c gain (db) frequency (hz) phase () 10 0 10 2 10 4 10 6 10 8 -75 -50 -25 0 25 50 75 100 125 -135 -90 -45 0 45 90 135 180 225 gain phase vcc=5v rl=32 cl=400pf t amb =25c gain (db) frequency (hz) phase () figure 10. open-loop frequency response figure 11. open-loop frequency response 10 0 10 2 10 4 10 6 10 8 -75 -50 -25 0 25 50 75 100 125 -135 -90 -45 0 45 90 135 180 225 gain phase vcc=2.5v rl=600 t amb =25c gain (db) frequency (hz) phase () 10 0 10 2 10 4 10 6 10 8 -75 -50 -25 0 25 50 75 100 125 -135 -90 -45 0 45 90 135 180 225 gain phase vcc=5v rl=600 t amb =25c gain (db) frequency (hz) phase () figure 12. power derating curves figure 13. power derating curves 0 25 50 75 100 125 150 0.0 0.2 0.4 0.6 0.8 4-layer pcb no heat sink miniso8 package power dissipation (w) ambiant temperature ( c) 0 25 50 75 100 125 150 0 1 2 3 4-layer pcb dfn8 no heatsink package power dissipation (w) ambiant temperature ( c)
TS488-ts489 electrical characteristics 11/32 figure 14. signal to noise ratio vs. power supply voltage figure 15. signal to noise ratio vs. power supply voltage 23456 98 100 102 104 106 108 110 rl=32 a-weighted filter av=-1, t amb =25c cb=1 f thd+n<0.4% signal to noise ratio (db) power supply voltage (v) rl=16 23456 94 96 98 100 102 104 106 rl=32 unweighted filter (20hz-20khz) av=-1, t amb =25c cb=1 f thd+n<0.4% signal to noise ratio (db) power supply voltage (v) rl=16 figure 16. signal to noise ratio vs. power supply voltage figure 17. signal to noise ratio vs. power supply voltage 23456 94 96 98 100 102 104 106 rl=32 a-weighted filter av=-2, t amb =25c cb=1 f thd+n<0.4% signal to noise ratio (db) power supply voltage (v) rl=16 23456 90 92 94 96 98 100 102 rl=32 unweighted filter (20hz-20khz) av=-2, t amb =25c cb=1 f thd+n<0.4% signal to noise ratio (db) power supply voltage (v) rl=16 figure 18. signal to noise ratio vs. power supply voltage figure 19. signal to noise ratio vs. power supply voltage 23456 88 90 92 94 96 98 100 rl=32 a-weighted filter av=-4, t amb =25c cb=1 f thd+n<0.4% signal to noise ratio (db) power supply voltage (v) rl=16 23456 86 88 90 92 94 96 98 rl=32 unweighted filter (20hz-20khz) av=-4, t amb =25c cb=1 f thd+n<0.4% signal to noise ratio (db) power supply voltage (v) rl=16
electrical characteristics TS488-ts489 12/32 figure 20. power dissipation vs. output power per channel figure 21. power dissipation vs. output power per channel 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 rl=32 rl=16 vcc=2.5v, f=1khz, thd+n<1% power dissipation (mw) output power (mw) 0 10203040506070 0 5 10 15 20 25 30 35 40 rl=32 rl=16 vcc=3.3v, f=1khz, thd+n<1% power dissipation (mw) output power (mw) figure 22. power dissipation vs. output power per channel figure 23. power supply rejection ratio vs. frequency 0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 rl=32 rl=16 vcc=5v, f=1khz, thd+n<1% power dissipation (mw) output power (mw) 100 1k 10k -80 -70 -60 -50 -40 -30 -20 -10 0 vcc=5v vcc=3.3v 20k 20 vcc=2.5v inputs grounded, av=-1, rl = 16 , cb=1 f, t amb =25c psrr (db) frequency (hz) figure 24. power supply rejection ratio vs. frequency figure 25. power supply rejection ratio vs. frequency 100 1k 10k -80 -70 -60 -50 -40 -30 -20 -10 0 av=-4 av=-1 20k 20 av=-2 inputs grounded, vcc=3.3v, rl=16 , cb=1 f, t amb =25c psrr (db) frequency (hz) 100 1k 10k -80 -70 -60 -50 -40 -30 -20 -10 0 cb=1 f cb=100nf cb=470nf 20k 20 cb=220nf inputs grounded, av=-1, rl=16 , vcc=3.3v, t amb =25c psrr (db) frequency (hz)
TS488-ts489 electrical characteristics 13/32 figure 26. total harmonic distortion plus noise vs. output power figure 27. total harmonic distortion plus noise vs. output power 1 10 100 1e-3 0.01 0.1 1 10 v cc =3.3v v cc =5v v cc =2.5v f=1khz, r l =16 a v =-1, t amb =25c bw=20hz-120khz thd+n (%) output power (mw) 200 1 10 100 0.01 0.1 1 10 v cc =3.3v v cc =5v v cc =2.5v f=20khz, r l =16 a v =-1, t amb =25c bw=20hz-120khz thd+n (%) output power (mw) 200 figure 28. total harmonic distortion plus noise vs. output power figure 29. total harmonic distortion plus noise vs. output power 1 10 100 1e-3 0.01 0.1 1 10 v cc =3.3v v cc =5v v cc =2.5v f=1khz, r l =32 a v =-1, t amb =25c bw=20hz-120khz thd+n (%) output power (mw) 200 1 10 100 0.01 0.1 1 10 v cc =3.3v v cc =5v v cc =2.5v f=20khz, r l =32 a v =-1, t amb =25c bw=20hz-120khz thd+n (%) output power (mw) 200 figure 30. total harmonic distortion plus noise vs. output power figure 31. total harmonic distortion plus noise vs. output power 0.01 0.1 1 1e-3 0.01 0.1 1 10 v cc =3.3v v cc =5v v cc =2.5v f=1khz, r l =600 a v =-1, t amb =25c bw=20hz-120khz thd+n (%) output voltage (v rms ) 3 0.01 0.1 1 1e-3 0.01 0.1 1 10 v cc =3.3v v cc =5v v cc =2.5v f=20khz, r l =600 a v =-1, t amb =25c bw=20hz-120khz thd+n (%) output voltage (v rms ) 3
electrical characteristics TS488-ts489 14/32 figure 32. total harmonic distortion plus noise vs. output power figure 33. total harmonic distortion plus noise vs. output power 1 10 100 1e-3 0.01 0.1 1 10 v cc =3.3v v cc =5v v cc =2.5v f=1khz, r l =16 a v =-2, t amb =25c bw=20hz-120khz thd+n (%) output power (mw) 200 1 10 100 0.01 0.1 1 10 v cc =3.3v v cc =5v v cc =2.5v f=20khz, r l =16 a v =-2, t amb =25c bw=20hz-120khz thd+n (%) output power (mw) 200 figure 34. total harmonic distortion plus noise vs. output power figure 35. total harmonic distortion plus noise vs. output power 1 10 100 1e-3 0.01 0.1 1 10 v cc =3.3v v cc =5v v cc =2.5v f=1khz, r l =32 a v =-2, t amb =25c bw=20hz-120khz thd+n (%) output power (mw) 200 1 10 100 0.01 0.1 1 10 v cc =3.3v v cc =5v v cc =2.5v f=20khz, r l =32 a v =-2, t amb =25c bw=20hz-120khz thd+n (%) output power (mw) 200 figure 36. total harmonic distortion plus noise vs. output power figure 37. total harmonic distortion plus noise vs. output power 0.01 0.1 1 1e-3 0.01 0.1 1 10 v cc =3.3v v cc =5v v cc =2.5v f=1khz, r l =600 a v =-2, t amb =25c bw=20hz-120khz thd+n (%) output voltage (v rms ) 3 0.01 0.1 1 0.01 0.1 1 10 v cc =3.3v v cc =5v v cc =2.5v f=20khz, r l =600 a v =-2, t amb =25c bw=20hz-120khz thd+n (%) output voltage (v rms ) 3
TS488-ts489 electrical characteristics 15/32 figure 38. total harmonic distortion plus noise vs. output power figure 39. total harmonic distortion plus noise vs. output power 1 10 100 1e-3 0.01 0.1 1 10 v cc =3.3v v cc =5v v cc =2.5v f=1khz, r l =16 a v =-4, t amb =25c bw=20hz-120khz thd+n (%) output power (mw) 200 1 10 100 0.1 1 10 v cc =3.3v v cc =5v v cc =2.5v f=20khz, r l =16 a v =-4, t amb =25c bw=20hz-120khz thd+n (%) output power (mw) 200 figure 40. total harmonic distortion plus noise vs. output power figure 41. total harmonic distortion plus noise vs. output power 1 10 100 1e-3 0.01 0.1 1 10 v cc =3.3v v cc =5v v cc =2.5v f=1khz, r l =32 a v =-4, t amb =25c bw=20hz-120khz thd+n (%) output power (mw) 200 1 10 100 0.01 0.1 1 10 v cc =3.3v v cc =5v v cc =2.5v f=20khz, r l =32 a v =-4, t amb =25c bw=20hz-120khz thd+n (%) output power (mw) 200 figure 42. total harmonic distortion plus noise vs. output power figure 43. total harmonic distortion plus noise vs. output power 0.01 0.1 1 1e-3 0.01 0.1 1 10 v cc =3.3v v cc =5v v cc =2.5v f=1khz, r l =600 a v =-4, t amb =25c bw=20hz-120khz thd+n (%) output voltage (v rms ) 3 0.01 0.1 1 0.01 0.1 1 10 v cc =3.3v v cc =5v v cc =2.5v f=20khz, r l =600 a v =-4, t amb =25c bw=20hz-120khz thd+n (%) output voltage (v rms ) 3
electrical characteristics TS488-ts489 16/32 figure 44. total harmonic distortion plus noise vs. frequency figure 45. total harmonic distortion plus noise vs. frequency 100 1k 10k 1e-3 0.01 0.1 1 vcc=5v, po=100mw vcc=3.3v, po=40mw 20k 20 vcc=2.5v, po=20mw r l =16 , a v =-1 bw=20hz-120khz t amb =25c thd+n (%) frequency (hz) 100 1k 10k 1e-3 0.01 0.1 1 vcc=5v, po=60mw vcc=3.3v, po=25mw 20k 20 vcc=2.5v, po=12mw r l =32 , a v =-1 bw=20hz-120khz t amb =25c thd+n (%) frequency (hz) figure 46. total harmonic distortion plus noise vs. frequency figure 47. total harmonic distortion plus noise vs. frequency 100 1k 10k 1e-3 0.01 0.1 1 vcc=5v, po=1.6v rms vcc=3.3v, vo=1v rms 20k 20 vcc=2.5v, vo=0.7v rms r l =600 , a v =-1 bw=20hz-120khz t amb =25c thd+n (%) frequency (hz) 100 1k 10k 1e-3 0.01 0.1 1 vcc=5v, po=100mw vcc=3.3v, po=40mw 20k 20 vcc=2.5v, po=20mw r l =16 , a v =-2 bw=20hz-120khz t amb =25c thd+n (%) frequency (hz) figure 48. total harmonic distortion plus noise vs. frequency figure 49. total harmonic distortion plus noise vs. frequency 100 1k 10k 1e-3 0.01 0.1 1 vcc=5v, po=60mw vcc=3.3v, po=25mw 20k 20 vcc=2.5v, po=12mw r l =32 , a v =-2 bw=20hz-120khz t amb =25c thd+n (%) frequency (hz) 100 1k 10k 1e-3 0.01 0.1 1 vcc=5v, po=1.6v rms vcc=3.3v, vo=1v rms 20k 20 vcc=2.5v, vo=0.7v rms r l =600 , a v =-2 bw=20hz-120khz t amb =25c thd+n (%) frequency (hz)
TS488-ts489 electrical characteristics 17/32 figure 50. total harmonic distortion plus noise vs. frequency figure 51. total harmonic distortion plus noise vs. frequency 100 1k 10k 1e-3 0.01 0.1 1 vcc=5v, po=100mw vcc=3.3v, po=40mw 20k 20 vcc=2.5v, po=20mw r l =16 , a v =-4 bw=20hz-120khz t amb =25c thd+n (%) frequency (hz) 100 1k 10k 1e-3 0.01 0.1 1 vcc=5v, po=60mw vcc=3.3v, po=25mw 20k 20 vcc=2.5v, po=12mw r l =32 , a v =-4 bw=20hz-120khz t amb =25c thd+n (%) frequency (hz) figure 52. total harmonic distortion plus noise vs. frequency figure 53. output power vs. load resistance 100 1k 10k 1e-3 0.01 0.1 1 vcc=5v, po=1.6v rms vcc=3.3v, vo=1v rms 20k 20 vcc=2.5v, vo=0.7v rms r l =600 , a v =-4 bw=20hz-120khz t amb =25c thd+n (%) frequency (hz) 8 16243240485664 0 25 50 75 thd+n=10% vcc=2.5v, f=1khz t amb =25c bw=20hz-120khz output power (mw) load resistance ( ) thd+n=1% figure 54. output power vs. load resistance figure 55. output power vs. load resistance 8 16243240485664 0 25 50 75 100 125 thd+n=10% vcc=3.3v, f=1khz t amb =25c bw=20hz-120khz output power (mw) load resistance ( ) thd+n=1% 8 16243240485664 0 50 100 150 200 250 thd+n=10% vcc=5v, f=1khz t amb =25c bw=20hz-120khz output power (mw) load resistance ( ) thd+n=1%
electrical characteristics TS488-ts489 18/32 figure 56. output power vs. power supply voltage figure 57. output power vs. power supply voltage 23456 0 40 80 120 160 200 240 thd+n=1% r l =16 , f=1khz t amb =25c bw=20hz-120khz output power (mw) power supply voltage (v) thd+n=10% 23456 0 20 40 60 80 100 120 140 thd+n=1% r l =32 , f=1khz t amb =25c bw=20hz-120khz output power (mw) power supply voltage (v) thd+n=10% figure 58. output voltage swing vs. power supply voltage figure 59. current consumption vs. power supply voltage figure 60. current consumption vs. standby voltage figure 61. current consumption vs. standby voltage 23456 0 1 2 3 4 5 6 rl=16 t amb =25c v oh & v ol (v) power supply voltage (v) rl=32 23456 0 1 2 3 t amb = -40c t amb = 85c t amb = 25c no loads current consumption (ma) power supply voltage (v) 0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5 TS488, t amb =-40c TS488, t amb =25c TS488, t amb =85c v cc =2.5v current consumption (ma) standby voltage (v) 0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5 ts489, t amb =-40c ts489, t amb =25c ts489, t amb =85c v cc =2.5v current consumption (ma) standby voltage (v)
TS488-ts489 electrical characteristics 19/32 figure 62. current consumption vs. standby voltage figure 63. current consumption vs. standby voltage 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 TS488, t amb =-40c TS488, t amb =25c TS488, t amb =85c v cc =3.3v current consumption (ma) standby voltage (v) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 ts489, t amb =-40c ts489, t amb =25c ts489, t amb =85c v cc =3.3v current consumption (ma) standby voltage (v) figure 64. current consumption vs. standby voltage figure 65. current consumption vs. standby voltage 0.0 0.5 1.0 1.5 2.0 4 5 0 1 2 3 4 5 6 ts489, t amb =-40c ts489, t amb =25c ts489, t amb =85c v cc =5v current consumption (ma) standby voltage (v) 0.0 0.5 1.0 1.5 2.0 4 5 0 1 2 3 4 5 6 ts489, t amb =-40c ts489, t amb =25c ts489, t amb =85c v cc =5v current consumption (ma) standby voltage (v) figure 66. crosstalk vs. frequency figure 67. crosstalk vs. frequency 100 1k 10k -120 -100 -80 -60 -40 -20 0 out2 to out1 20k 20 out1 to out2 vcc=2.5v, rl=16 av=-1, po=20mw t amb =25c crosstalk (db) frequency (hz) 100 1k 10k -120 -100 -80 -60 -40 -20 0 out2 to out1 20k 20 out1 to out2 vcc=2.5v, rl=32 av=-1, po=12mw t amb =25c crosstalk (db) frequency (hz)
electrical characteristics TS488-ts489 20/32 figure 68. crosstalk vs. frequency figure 69. crosstalk vs. frequency 100 1k 10k -120 -100 -80 -60 -40 -20 0 out2 to out1 20k 20 out1 to out2 vcc=3.3v, rl=16 av=-1, po=40mw t amb =25c crosstalk (db) frequency (hz) 100 1k 10k -120 -100 -80 -60 -40 -20 0 out2 to out1 20k 20 out1 to out2 vcc=3.3v, rl=32 av=-1, po=25mw t amb =25c crosstalk (db) frequency (hz) figure 70. crosstalk vs. frequency figure 71. crosstalk vs. frequency 100 1k 10k -120 -100 -80 -60 -40 -20 0 out2 to out1 20k 20 out1 to out2 vcc=5v, rl=16 av=-1, po=100mw t amb =25c crosstalk (db) frequency (hz) 100 1k 10k -120 -100 -80 -60 -40 -20 0 out2 to out1 20k 20 out1 to out2 vcc=5v, rl=32 av=-1, po=60mw t amb =25c crosstalk (db) frequency (hz) figure 72. crosstalk vs. frequency figure 73. crosstalk vs. frequency 100 1k 10k -120 -100 -80 -60 -40 -20 0 out2 to out1 20k 20 out1 to out2 vcc=2.5v, rl=16 av=-4, po=20mw t amb =25c crosstalk (db) frequency (hz) 100 1k 10k -120 -100 -80 -60 -40 -20 0 out2 to out1 20k 20 out1 to out2 vcc=2.5v, rl=32 av=-4, po=12mw t amb =25c crosstalk (db) frequency (hz)
TS488-ts489 electrical characteristics 21/32 figure 74. crosstalk vs. frequency figure 75. crosstalk vs. frequency 100 1k 10k -120 -100 -80 -60 -40 -20 0 out2 to out1 20k 20 out1 to out2 vcc=3.3v, rl=16 av=-4, po=40mw t amb =25c crosstalk (db) frequency (hz) 100 1k 10k -120 -100 -80 -60 -40 -20 0 out2 to out1 20k 20 out1 to out2 vcc=3.3v, rl=32 av=-4, po=25mw t amb =25c crosstalk (db) frequency (hz) figure 76. crosstalk vs. frequency figure 77. crosstalk vs. frequency 100 1k 10k -120 -100 -80 -60 -40 -20 0 out2 to out1 20k 20 out1 to out2 vcc=5v, rl=16 av=-4, po=100mw t amb =25c crosstalk (db) frequency (hz) 100 1k 10k -120 -100 -80 -60 -40 -20 0 out2 to out1 20k 20 out1 to out2 vcc=5v, rl=32 av=-4, po=60mw t amb =25c crosstalk (db) frequency (hz)
application information TS488-ts489 22/32 4 application information 4.1 power dissipation and efficiency hypotheses: voltage and current in the load are sinusoidal (v out and i out ). supply voltage is a pure dc source (v cc ). regarding the load we have: and and the average current delivered by the power supply voltage is: figure 78. current delivered by power supply voltage in single-ended configuration the power delivered by power supply voltage is: so, the power dissipation by each power amplifier is and the maximum value is obtained when: v out v peak tv () sin = i out v out r l -------------- a () = p out v peak 2 2r l ----------------- a () = i cc avg 1 2 ------ v peak r l ----------------- t () sin t d 0 v peak r l ----------------- a () == icc (t) time t/2 t icc avg vpeak/r l 03t/22t p supply v cc i cc avg w () = p diss p supply p out w () ? = p diss 2v cc r l ------------------ - p out p out w () ? = p out ? ? p diss 0 =
TS488-ts489 application information 23/32 and its value is: note: this maximum value depends only on power supply voltage and load values. the efficiency is the ratio between the output power and the power supply: the maximum theoretical value is reached when v peak = v cc /2, so 4.2 total power dissipation the TS488/9 is stereo (dual channel) amplifier. it has two independent power amplifiers. each amplifier produces heat due to its power dissipation. therefore the maximum die temperature is the sum of each amplifier?s maximum power dissipation. it is calculated as follows: p diss r = power dissipation due to the right channel power amplifier. p diss l = power dissipation due to the left channel power amplifier. total p diss =p diss r +p diss l (w) typically, p diss r is equal to p diss l , giving: 4.3 lower cut-off frequency the lower cut-off frequency f cl of the amplifier depends on input capacitors c in and output capacitors c out . the input capacitor c in (output capacitor c out ) in serial with the input resistor r in (load resistor r l ) of the amplifier is equivalent to a first order high pass filter. assuming that f cl is the lowest frequency to be amplified (with a 3db attenuation), the minimum value of the c in (c out ) is: p diss max v cc 2 2 r l ------------ - w () = p out p supply ------------------- v peak 2v cc ------------------ == 4 -- - 78.5% == totalp diss 2p dissr 2p dissl == totalp diss 22v cc r l ---------------------- p out 2p out ? = c in 1 2 f cl r in ?? --------------------------------------- - = c out 1 2 f cl r l ?? -------------------------------------- =
application information TS488-ts489 24/32 note: in case f cl is kept the same for calculation, it must be taken in account that the 1st order high-pass filter on the input and the 1st order high-pass filter on the output create a 2nd order high-pass filter in the audio signal path with an attenuation 6db on f cl and a roll-off 40db ? decade. 4.4 higher cut-off frequency in the high frequency region, you can limit the bandwidth by adding a capacitor c feed in parallel with r feed . it forms a low-pass filter with a -3db cut-off frequency f ch . assuming that f ch is highest frequency to be amplified (with a 3db attenuation), the maximum value of c feed is: figure 79. lower cut-off frequency vs. input capacitor figure 80. lower cut-off frequency vs. output capacitor 1 10 100 1000 10 100 1k 10k rin=50k rin=100k rin=20k lower cut-off frequency (hz) cin (nf) rin=10k 0.1 1 10 100 1000 10 100 1k 10k r l =32 r l =600 r l =16 lower cut-off frequency (hz) cout ( f) figure 81. higher cut-off frequency vs. feedback capacitor f ch 1 2 r feed c feed ?? -------------------------------------------------- = 0.01 0.1 1 10 100 100 1k 10k 100k rfeed=40k rfeed=80k rfeed=20k higher cut-off frequency (khz) cfeed ( f ) rfeed=10k
TS488-ts489 application information 25/32 4.5 gain setting in the flat frequency response region (with no effect from c in , c out , c feed ), the output voltage is: the gain a v is: 4.6 decoupling of the circuit two capacitors are needed to properly bypass the TS488 (ts489), a power supply capacitor c s and a bias voltage bypass capacitor c b . c s has a strong influence on the thd+n in the high frequency range (above 7khz) and indirectly on the power supply disturbances. with 1f, you can expect thd+n performance to be similar to the one shown in the datasheet. if c s is lower than 1f, the thd+n increases in the higher frequencies and disturbances on the power supply rail are less filtered. on the contrary, if c s is higher than 1f, the disturbances on the power supply rail are more filtered. c b has an influence on the thd+n in the low frequency range. its value is critical on the psrr with grounded inputs in the lower frequencies: if c b is lower than 1f, the thd+n improves and the psrr worsens. if c b is higher than 1f, the benefit on the thd+n and psrr is small. note: the input capacitor c in also has a significant effect on the psrr at lower frequencies. the lower the value of c in , the higher the psrr. 4.7 standby mode when the standby mode is activated an internal circuit of the TS488 (ts489) is charged (see figure 82 ). a time required to change the in ternal circuit is a few microseconds. figure 82. internal equivalent schematic of the TS488 (ts489) in standby mode v out v in r feed r in -------------- ? ?? ?? ? v in a v ? == a v r feed r in -------------- ? = 25k 25k 600k 600k vin1 bypass vin2 vout1 vout2 gnd TS488/9
application information TS488-ts489 26/32 4.8 wake-up time when the standby is released to put the device on, the bypass capacitor c b is charged immediately. as c b is directly linked to the bias of the amplifier, the bias will not work properly until the c b voltage is correct. the time to reach this voltage plus a time delay of 20ms (pop precaution) is called the wake-up time or t wu ; it is specified in the electrical characteristics table with c b = 1f. if c b has a value other than 1f, t wu can be calculated by applying the following formulas or can be read directly from figure 83 . figure 83. typical wake-up time vs. bypass capacitance note: it is assumed that the c b voltage is equal to 0v. if the c b voltage is not equal to 0v, the wake-up time is shorter. 4.9 pop performance pop performance is closely related to the size of the input capacitor c in . the size of c in is dependent on the lower cut-off frequency and psrr values requested. in order to reach low pop, c in must be charged to v cc /2 in less than 20ms. to follow this rule, the equivalent input constant time (r in c in ) should be less then 6.7ms: in = r in xc in < 0.0067 (s) example calculation: in the typical application schematic r in is 20k and c in is 330nf. the lower cut-off frequency (-3db attenuation) is given by the following formula: t wu c b 2.5 ? 0.03125 ---------------------- 20 [ms; f ] + = 012345 0 50 100 150 200 250 300 350 400 t amb =25c wake-up time (ms) cb ( f) f cl 1 2 r in c in ?? -------------------------------------- =
TS488-ts489 application information 27/32 with the values above, the result is f cl =25hz. in this case, in = r in xc in =6.6ms. this value is sufficient with regard to the previo us formula, thus we can state that the pop is imperceptible. connecting the headphones generally headphones are connected using jack connectors. to prevent a pop in the headphones when plugging in the jack, a pulldown resistor should be connected in parallel with each headphone output. this allows the capacitors c out to be charged even when the headphones are not plugged in. pulldown resistors with a value of 1 k are high enough to be a negligible load, and low enough to charge the capacitors c out in less than one second. note: the pop&click reduction circuitry works properly only when both channels have the same value for the external components c in , c out , r load and r pulldown .
package mechanical data TS488-ts489 28/32 5 package mechanical data in order to meet environmental requirements, stmicroelectronics offers these devices in ecopack ? packages. these packages have a lead-free second level interconnect. the category of second level interconnect is marked on the package and on the inner box label, in compliance with jedec standard jesd97. the maximum ratings related to soldering conditions are also marked on the inner box label. ecopack is an stmicroelectronics trademark. ecopack specifications are available at: www.st.com . 5.1 miniso-8 p ackage
TS488-ts489 package mechanical data 29/32 5.2 dfn8 p ackage dim. mm. inch min. typ max. min. typ. max. a 0.80 0.90 1.00 0.031 0.035 0.039 a1 0.02 0.05 0.001 0.002 a3 0.15 0.006 b 0.20 0.25 0.30 0.008 0.010 0.012 d2 1.45 1.60 1.70 0.057 0.063 0.067 e2 0.75 0.90 1.00 0.030 0.035 0.039 l 0.225 0.325 0.425 0.009 0.013 0.017 d 2.00 0.079 e 2.00 0.079 aaa 0.15 0.006 bbb 0.10 0.004 ccc 0.10 0.004 qfn8 (2x2) mechanical data aaa c aaa c 2x 2x (d/2 xe/2) 4 index area top view ccc c plane seating 0.08 c nx 8 a b c 10 bbb c a b 7 (d/2 xe/2) index area bottom view 4 side view pin#1 id d e a1 a3 a e nx b e2 d2 nx l exposed pad nx k 0.60 0.55 0.51 0.022 0.020 0.024 d
ordering information TS488-ts489 30/32 6 ordering information table 8. order codes part number temperature range package packing marking TS488ist -40c to +85c miniso-8 tape & reel k488 TS488iqt dfn8 k88 ts489ist miniso-8 k489 ts489iqt dfn8 k89
TS488-ts489 revision history 31/32 7 revision history table 9. document revision history date revision changes 2-jan-2006 1 first release corresponding to the product preview version. 1-feb-2006 2 removal of typical application schematic on first page (it appears in figure 1 on page 3 ). minor grammatical and formatting corrections throughout. 4-aug-2006 3 update of marking. update of dfn8 package height. editorial update. 15-sep-2006 4 revision corresponding to the release to production of the TS488 - ts489.
TS488-ts489 32/32 please read carefully: information in this document is provided solely in connection with st products. stmicroelectronics nv and its subsidiaries (?st ?) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described he rein at any time, without notice. all st products are sold pursuant to st?s terms and conditions of sale. purchasers are solely responsible for the choice, selection and use of the st products and services described herein, and st as sumes no liability whatsoever relating to the choice, selection or use of the st products and services described herein. no license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. i f any part of this document refers to any third party products or services it shall not be deemed a license grant by st for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoev er of such third party products or services or any intellectual property contained therein. unless otherwise set forth in st?s terms and conditions of sale st disclaims any express or implied warranty with respect to the use and/or sale of st products including without limitation implied warranties of merchantability, fitness for a parti cular purpose (and their equivalents under the laws of any jurisdiction), or infringement of any patent, copyright or other intellectual property right. unless expressly approved in writing by an authorized st representative, st products are not recommended, authorized or warranted for use in milita ry, air craft, space, life saving, or life sustaining applications, nor in products or systems where failure or malfunction may result in personal injury, death, or severe property or environmental damage. st products which are not specified as "automotive grade" may only be used in automotive applications at user?s own risk. resale of st products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by st for the st product or service described herein and shall not create or extend in any manner whatsoev er, any liability of st. st and the st logo are trademarks or registered trademarks of st in various countries. information in this document supersedes and replaces all information previously supplied. the st logo is a registered trademark of stmicroelectronics. all other names are the property of their respective owners. ? 2006 stmicroelectronics - all rights reserved stmicroelectronics group of companies australia - belgium - brazil - canada - china - czech republic - finland - france - germany - hong kong - india - israel - ital y - japan - malaysia - malta - morocco - singapore - spain - sweden - switzerland - united kingdom - united states of america www.st.com


▲Up To Search▲   

 
Price & Availability of TS488

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X